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A number of recent experimental studies [1] have demonstrated 
that a suspension of self-propelled bacteria (Bacillus subtilis) 

at moderate concentrations may have an effective viscosity that is 
significantly (up to five to seven times) smaller than the viscosity 
of the ambient fluid. This is in sharp contrast to suspensions of 
hard passive inclusions, whose presence always increases viscosity. 
Detailed understanding of this viscosity phenomenon will help in 
the development of new materials and engineering solutions (e.g., 
improved micro-mixers). The 2D model developed in [2] captured 
an experimentally observed decrease of effective viscosity and 
provided an explanation for the underlying mechanisms.

The analysis was performed for moderate concentrations (about 
9% by volume) of micro-swimmers that closely resemble the 
experimental settings, where a computer simulation is the only 
available tool. The analysis showed that the decrease in the effective 
viscosity observed in the physical experiments can be explained 
entirely from the point of view of hydrodynamic interactions. This 
is an important observation, since suspensions of bacteria represent 
a very complex system with a variety of phenomena occurring 
simultaneously, such as chemotaxis and secretion of proteins by 
living bacteria. These phenomena may influence the effective 
viscosity and are hard to isolate in physical experiments.

The key features leading to the decrease of viscosity are: 1) self-
propulsion, 2) the elongated shape of the swimmers, and 3) the 
swimmer-swimmer interactions.

The elongated body of the swimmer is modeled by an ellipse. The 
self-propulsion is modeled by distributing a force (modeling the 
action of the flagella) of magnitude fp over the back half of the 
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Fig. 1. Snapshots of micro-swimmers in the shear background flow. The 
blue half of the ellipse represents a solid surface, while the red half repre-
sents the surface covered by flagella. The top figure shows pushers (fp > 0), 
which tend to swim side-by-side. The bottom figure shows pullers 
(fp < 0), which tend to follow each other forming head-to-tail train-like 
structures.
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ellipse. This force pushes fluid backward (away from the center of 
the swimmer), resulting in the forward propulsion of the swimmer. 
The other (front) half of the ellipse represents a solid surface 
(head of the bacterium). The numerical analysis and experimental 
observations show that it is important to distinguish between 
two types of swimmers: pushers (fp > 0) – swimmers propelling 
themselves forward (e.g., B. subtilis), and pullers (fp < 0) – swimmers 
propelling themselves backwards (e.g., some algae). Pushers tend to 
swim side-by-side, while pullers tend to follow each other, forming 
train-like structures (Fig.1).

The key step in the numerical analysis of the problem was the 
solution of the incompressible Stokes problem in the fluid domain 
with complex geometry and mixed boundary conditions. The 
solution was achieved using the mimetic finite difference (MFD) 
method [3]. The MFD method combines the mesh flexibility of the 
finite volume methods with the analytical power of finite element 
(FE) methods. The MFD method can be viewed as an extension 
of FE methods to unstructured polygonal meshes. The mesh 
flexibility simplifies mesh generation around swimmers that may 
have complicated shapes, e.g., the MFD method allows the mesh 
elements to have curved edges. Compared with FE methods, the 
MFD method minimizes the number of discrete unknowns (without 
loss of accuracy) by: 1) partitioning of the computation domain 
into a smaller number of elements that are polygons, and 2) using a 
smaller number of velocity and pressure unknowns only where they 
are needed for accuracy and stability of the discretization. The MFD 
method is second-order accurate (with respect to the local mesh size) 
for the velocity and first-order accurate for the pressure.

Numerically, the effective shear viscosity was measured by placing 
a suspension of micro-swimmers between two horizontal plates 
and forcing these plates to move in opposite directions with a 
constant velocity. The effective viscosity was defined as a coefficient 
of proportionality between the velocity of the plates and the force 
required to keep the plates moving.

Fig. 2. Suspension of 25 swimmers at moderate concentration (9% by 
volume) in a unit square with shear velocity boundary conditions on top 
and bottom sides, and periodic boundary conditions on vertical sides. 
The green horizontal line indicates the viscosity of the ambient fluid. The 
blue oscillating line in the top picture shows instantaneous measurements 
of the shear viscosity. The red horizontal line indicates the time average 
of the instantaneous measurements. Linear reduction of the effective 
shear viscosity is observed when propulsion force fp is less than 5. Wall 
effects become important for larger values of fp.

The numerical simulations 
showed that the effective shear 
(Fig.2.) viscosity decays linearly 
as a function of the propulsion 
strength fp, i.e., pushers decrease 
the effective viscosity. The linear 
trend continues for negative 
values of fp, i.e., pullers increase 
the effective viscosity. For 
large values of the propulsion 
strength, the linear trend seems 
to change. We explain this 
by the finite size of the fluid 
domain in our simulations 
and the dynamics of a single 
swimmer in a shear flow.
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